Reevaluation of the role of the Pam18:Pam16 interaction in translocation of proteins by the mitochondrial Hsp70-based import motor

نویسندگان

  • June E. Pais
  • Brenda Schilke
  • Elizabeth A. Craig
چکیده

The heat-shock protein 70 (Hsp70)-based import motor, associated with the translocon on the matrix side of the mitochondrial inner membrane, drives translocation of proteins via cycles of binding and release. Stimulation of Hsp70's ATPase activity by the translocon-associated J-protein Pam18 is critical for this process. Pam18 forms a heterodimer with the structurally related protein Pam16, via their J-type domains. This interaction has been proposed to perform a critical regulatory function, inhibiting the ATPase stimulatory activity of Pam18. Using biochemical and genetic assays, we tested this hypothesis by assessing the in vivo function of Pam18 variants having altered abilities to stimulate Hsp70's ATPase activity. The observed pattern of genetic interactions was opposite from that predicted if the heterodimer serves an inhibitory function; instead the pattern was consistent with that of mutations known to cause reduction in the stability of the heterodimer. Analysis of a previously uncharacterized region of Pam16 revealed its requirement for formation of an active Pam18:Pam16 complex able to stimulate Hsp70's ATPase activity. Together, our data are consistent with the idea that Pam18 and Pam16 form a stable heterodimer and that the critical role of the Pam18:Pam16 interaction is the physical tethering of Pam18 to the translocon via its interaction with Pam16.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic analysis of complex interactions among components of the mitochondrial import motor and translocon in Saccharomyces cerevisiae.

A highly conserved, Hsp70-based, import motor, which is associated with the translocase on the matrix side of the inner mitochondrial membrane, is critical for protein translocation into the matrix. Hsp70 is tethered to the translocon via interaction with Tim44. Pam18, the J-protein co-chaperone, and Pam16, a structurally related protein with which Pam18 forms a heterodimer, are also critical c...

متن کامل

Role of Pam16's degenerate J domain in protein import across the mitochondrial inner membrane.

Translocation of proteins across the mitochondrial inner membrane is an essential process requiring an import motor having mitochondrial Hsp70 (mtHsp70) at its core. The J protein partner of mtHsp70, Pam18, is an integral part of this motor, serving to stimulate the ATPase activity of mtHsp70. Pam16, an essential protein having an inactive J domain that is unable to stimulate mtHsp70's ATPase a...

متن کامل

Interaction of the J-protein heterodimer Pam18/Pam16 of the mitochondrial import motor with the translocon of the inner membrane.

Import of proteins across the inner mitochondrial membrane through the Tim23:Tim17 translocase requires the function of an essential import motor having mitochondrial 70-kDa heat-shock protein (mtHsp70) at its core. The heterodimer composed of Pam18, the J-protein partner of mtHsp70, and the related protein Pam16 is a critical component of this motor. We report that three interactions contribut...

متن کامل

Comparative Analysis of Putative Orthologues of Mitochondrial Import Motor Subunit: Pam18 and Pam16 in Plants

Pam18/Tim14 and Pam16/Tim16, highly conserved proteins among eukaryotes, are two essential subunits of protein import motors localized in the inner mitochondrial membrane. The heterodimer formed by Pam18 and Pam16 via their J-type domains serves a regulatory function in protein translocation. Here, we report that thirty-one Pam18 and twenty-six Pam16 putative orthologues in twelve plant species...

متن کامل

The Mitochondrial Protein Translocation Motor: Structural Conservation between the Human and Yeast Tim14/Pam18-Tim16/Pam16 co-Chaperones

Most of our knowledge regarding the process of protein import into mitochondria has come from research employing Saccharomyces cerevisiae as a model system. Recently, several mammalian homologues of the mitochondrial motor proteins were identified. Of particular interest for us is the human Tim14/Pam18-Tim16/Pam16 complex. We chose a structural approach in order to examine the evolutionary cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011